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ABSTRACT

Social behavior dynamics is one of the central building blocks
in understanding and modeling complex social dynamic phe-
nomena, such as information spreading, opinion formation,
and social mobilization. While a wide range of models for
social behavior dynamics have been proposed in recent years,
the essential ingredients and the minimum model for social
behavior dynamics is still largely unanswered. Here, we find
that human interaction behavior dynamics exhibit rich com-
plexities over the response time dimension and natural time
dimension by exploring a large scale social communication
dataset. To tackle this challenge, we develop a temporal
Heterogeneous Survival framework where the regularities in
response time dimension and natural time dimension can be
organically integrated. We apply our model in two online
social communication datasets. Our model can successfully
regenerate the interaction patterns in the social communica-
tion datasets, and the results demonstrate that the proposed
method can significantly outperform other state-of-the-art
baselines. Meanwhile, the learnt parameters and discovered
statistical regularities can lead to multiple potential applica-
tions.
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1 INTRODUCTION

Social behavior dynamics, referring to the dynamic process
of human interactions, is one of the central building blocks in
understanding and modeling complex social dynamic phenom-
ena, such as information spreading, opinion formation, and
social mobilization. While a wide range of models for social
behavior dynamics have been proposed in recent years, most
of them assume that the interactions among individuals are
highly random, following a Poisson process [6, 20]. Recently,
some recent non-trivial patterns of response time (i.e. the
duration between the time a person receives a message and
the time he makes a response) and the inter-event time (i.e.
the time duration between consecutive behaviors of the same
person) are found in empirical data [9, 23, 35]. A notable one
[35] is that most responses made in a very short time scale,
and some responses stall for a long time, resulting in a heavy-
tailed distribution on response time, which is in contrast with
the exponential distribution of response time generated by
the Poisson process assumption on social interaction behav-
iors. Meanwhile, some recent study finds the evidence that
the circadian rhythm [8], such as the working-rest periods, is
non-trivial in influencing human behavior dynamics. What
are the essential ingredients and the minimum model for
social behavior dynamics is still largely unanswered.

Here, we explore a large scale social communication dataset
consisting of 5 million users, finding that human interaction
behavior dynamics exhibit rich complexities. We plot the
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Figure 1: User activity densities of (a) an online information diffusion dataset described in section 4.1, (b)

the simulation generated from our model.

response density functions P;(7) of user activities versus dif-
ferent starting time ¢ in natural time scale in Figure 1(a). It
is obvious that the densities change over response time, while
the response time distribution also change over the natural
time dimension following an obvious circadian rhythm. This
suggests that the social behavior dynamics are temporally
heterogeneous in nature. Although there have been some
existing models to separately address the regularities in re-
sponse time [35] and circadian rhythm of human behaviors
[19], none of them can jointly model these two components,
leading to non-trivial bias and error in understanding and
predicting human behaviors.

In this paper, we propose a temporally Heterogeneous
Survival framework where the regularities in response time
dimension and natural time dimension are organically inte-
grated. Our proposed model has the following advantages:

e Unification power: it is able to model the prob-
lems in both natural time scenarios and response
time scenarios. As the model is designed under the
probabilistic framework, it can be easily solved by
Maximum Likelihood Estimation.

e Interpretability: All parameters have clear physical
meanings. This is helpful for insightful understand-
ing on social dynamics.

e Usefulness: We apply the model in two online social
communication datasets. The learnt parameters and
discovered statistical regularities lead to multiple
potential applications.

e Accuracy: as shown in Figure 1(b), our model can
successfully regenerate the interaction patterns in a

social communication dataset. Also, extensive experi-
ments are conducted to demonstrate the effectiveness
of the model.

The rest of the paper is organized as follows: in Section 2,
we give a survey on the related work. Section 3 presents a
general framework of Heterogeneous Survival Model. Based
on the observation of the dataset, we design a survival func-
tion modeling the social communication dynamics in Section
4. We evaluate our method and report the experimental
result in Section 5. Last, we conclude our paper in Section 6.

2 RELATED WORKS

Research works in social dynamics aim to understand and
model the information and knowledge spreading dynamics
over social systems. Recently, much effort has been made
towards this field thanks to the increasing availability of large-
scale datasets, leading to the discovery of a number of generic
mechanisms and ingredients governing social dynamics across
various domains.

A lot of works in network science community aim to model
diffusion dynamics through epidemic models in a continuous
time basis, leading to critical theoretical advances such as
the finding of absence of the epidemic threshold for inhomo-
geneous networks [2, 12, 22, 31, 34].

Complementarily, studies in the data mining community
are interested in extracting and mining information from the
real-world datasets. For example, a large portion of works
aimed to cluster diffusion dynamics by distinct user interests
and other human activities [1, 3-5, 10, 13, 14, 16-18, 21, 24—
27, 30, 33]. However, most data mining approaches focus on



seeking relevant features and metrics through exploratory
data analysis rather than offering generative models in a
dynamic fashion.

More recently, new approach emerges by fusing the tech-
niques developed in both areas, aiming to model the diffu-
sion dynamics through continuous time Markov processes
[6, 20]. Subsequent works based on the survival theory have
relaxed the Markov condition, aiming to capture the non-
Poisson nature of the observed waiting time distribution
19, 23, 28, 29, 35]. However, such kind of works can not deal
with the key factor that the diffusion dynamics is influenced
by the circadian rhythm [11, 32]. Although a few works
have tried to solve this situation by heterogeneous poisson
process [19], no models can consider both properties existing
in diffusion dynamics.

3 TEMPORALLY HETEROGENEOUS
SURVIVAL FRAMEWORK

In order to consider the complex waiting time pattern and
inhomogeneous user activity in human behavior, we design
a Temporally Heterogeneous Survival Framework depending
on natural time variable ¢t and response time variable 7. It
tries to answer the following questions: if an event starts at
t, what is the probability that a response event occurs after
a certain duration 77 Of those that did not occur (at ¢t + 1),
at what rate will they happen?

Based on the target of our framework, we propose three
metrics as below:

e fi(7): probability density function, to record the
probability that an event starts at ¢ while the re-
sponse duration is 7.

e S¢(7): survival function, the complement of the c.d.f,
which gives the probability of the response event did
not happen before t 4 7.

e )\¢(7): hazard function, or intensity function, the
conditional probability that the event will occur in
t + 7 if it did not happened before t 4 7.

Given one of these metrics, the other two metrics can also
be determined by the following equations:

Si(r) = Pr(T' 27) = /oo Fo(r)dr (1)

. _ai;(f) (2)
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For ease of modeling, we often try to model the hazard
function when the survival process is complex. It usually has
succinct formulation comparing with the other two metrics.

Next, we will give a formal definition of the communication
data, to explain what kind of data our model can handle.

3.1 Communication data format

Given a sender u and a receiver v, the communication data
of (u,v) is a joint set Q4 that consists of all the communi-
cation records between u and v: Q. = {(si,e;)}. Here, A
communication record (s, e) means one user (receiver) begins
a communication at s, and gets the response from another
user (sender) at e.

3.2 The Likelihood Function

Suppose that we have n communication records {(s;, €;)} gov-
erned by a survival function S(7|0) with associated density
function f;(7|0) and hazard function A;(7|f) under param-
eters 6. The likelihood function of communication records
can then be written as follows:
L =11, fs, (e: — sil6)

= ILo1 s, (€5 — 4]0) S5, (es — s4]6) (6)
Taking the logarithm of the survival function, we obtain the
log-likelihood function for the communication data:

l=1logL

= (log Xs, (e; — s:]0) +log Ss, (e; — 5:16))
=1
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The survival parameters 6 can then be measured by maxi-
mizing the log-likelihood function (Equation 7). Usually, we
can use the L-BFGS Quasi-Newton Method [15] to solve this
problem. We can first get the derivatives of all parameters
with respect to A, and then get the derivatives to the log-
likelihood function by using Equation 8 and Chain Rule in
calculus.

oI5 (log(hei(ei — sil6)) = [ A, (10)ar")
00 o0
-3 OAs, (ei — si0) /00 /ers" ONs; (t'10) s
- 3 )\Si(ei — 87,|l9) 0 80
(8)

3.3 General Decomposition

Usually, it is hard to design a comprehensible hazard function
due to the complex pattern in two-dimensional density func-
tion. Hence, an intuitive idea is to model the hazard function
by adopting a divide-and-conquer approach: we can first
design a stretching function w(t), indicating the activeness
of the user at different time ¢ (Thereby, the stretching func-
tion will have a mean value of 1). Simultaneously, we may
also design another respond function G(7) for the purpose
of modeling the intensity at different response time 7. After
that, the hazard function can be finalized by a combination
of these two functions:

Ae(T) = w(t)G(w(t)7) (9)



Given that it can include all previous studies as special
cases, we consider such kind of decomposition very powerful.
For example, when w(t) remains the same value (equal to 1)
at every point, the hazard function will degenerate to:

Ae(T) = G(1) (10)

leading to the same form of the homogeneous survival model.
On the other hand, when G is unchanged, the hazard
function will be:

A(7) = caw(t) (11)

In this situation, our heterogeneous survival model will degen-
erate to the heterogeneous poisson model. Thereby, it is clear
that our model gains the properties from both homogeneous
survival model and heterogeneous poisson model.

4 MODELING RESPONSE DYNAMICS
IN SOCIAL SYSTEM

In this section, we will first give an introduction to the dataset
we used in our paper. After that, we will give a solution on
modeling the patterns we discovered in the dataset.

4.1 Dataset Description

4.1.1 Online information diffusion data. !

This is an online information diffusion dataset [29] from
Tencent Weibo?, a Twitter-style social platform in China.
It includes all cascades with at least 5 tweets generated in
the 10 days between Nov 15 and Nov 25 2011. For each
tweet, there is a triad < u, ¢, > to respectively represent the
sender of tweet, sending time of tweet, and the user it reply
to. Therefore, it is easy to obtain a communication record
(t',t) by getting the tweet time ¢’ sent by r for each tweet.
In total, there are 0.46 million cascades in the dataset.

4.1.2 Email data. This dataset contains a 83-days email
communication records between users in an university mail
server [7]. Each record in the dataset is constituted by
a triad, e.g., <time t, sender r, receiver s >. For each
record < t,r,s >, we find the latest record < t',s,r >
sent before ¢t as a communication record (¢',¢). In order to
remove the communication record triggered by the automatic
response in the mail system, we omit the communication
record (t',t) whose response duration is less than 10 second,
e.g.,t—t <10.

4.2 Modeling Inhomogeneity in Daily
activity

We next examine the daily activity factor, which is not con-
sidered in most previous studies. We count the number of
messages per hour every day in the information diffusion
dataset, and illustrate the result at Figure 2. We can see that
the user activities have a clear circadian patterns: people are
more active at daytime and less active at night.

'The dataset is complete and available at
http://www.thumedia.org
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Figure 2: The number of messages per hour every
day in the information diffusion dataset.

0.8

o o
> N
;

o
wn

©
w

percentage of activities
o o
[N ~
:

o
o

>

0 . N } .
midnight daybreak morning noon afternoon evening
time of the day

N ——

Figure 3: diverse user activities in a social system

In order to eliminate the distinct survival effect caused by
the rise and fall pattern of daily activities, several previous
studies try to quantify the dynamics by event time instead of
natural time [8, 28, 29, 35] ®. The idea is very similar with
our design purpose of w(t). However, it has the following
drawbacks:

e [t can not provide insights on how people behave in
natural time.

e The design is not precise. By plotting the daily ac-
tivity values of six different users in Figure 3, we can
find that the user daily activities are very dissimilar?.

Hence, the idea of event time is not suitable for such kind of
dynamics.

3redefine the time by the number of messages users post on the social
system
4 Here, we divide the day into 6 periods, including:

— daybreak: 2:00-6:00

— morning: 6:00-10:00

— noon: 10:00-14:00

— afternoon: 14:00-18:00

— evening: 18:00-22:00

— midnight: 22:00-2:00(nextday)
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Figure 4: The probability density function of the
time interval between user communications in the
information diffusion dataset.

In order to model the circadian activities of a user, we
provide a Periodic Gaussian Mixture Model as below:

'=—o00

k o0
wit) =30 / Iyt i oDt (12)
i=0 t

Here, ITI7(t) is a Dirac comb® with the periodic parameter
T, and g(t'|i1, o) denotes the density of a normal distribution.
The periodic parameter 1" can be used in various domains. For
example, it will be a daily periodic function when 7' = 86400s,
and a weekly periodic function when T = 7days. In our
model, we choose to use a daily periodic function.

4.3 Modeling inhomogeneity in response
time

We further analyze the inhomogeneity in the response time
dimension. we estimate the probability density function of
the time interval between user communications, and illustrate
it in Figure 4. As we can see, the response time ranges over
five orders of magnitudes. Basically, it can be classified into
three parts. For the middle scale, it can be well approximated
by a power-law function. However, the power-law character-
istic can not capture the pattern in shorter and longer time
scales. The sharp cutoff at large time scale indicates a clear
exponential tail. Nevertheless, it is very dissimilar between
real data and the homogeneous poisson process.

Thereby, we proposed the following Weibull based generic
intensity function to incorporate different activity patterns
in heterogenous dimension:

G(t) = X7 “H(T — f) (13)

where the parameters {\o, @, 8} captures the following
different aspects in human activity patterns:

Shttp://en.wikipedia.org/wiki/Dirac_comb

e )\o is the scale parameter of the distribution. It
mainly controls the average duration of the response.
The smaller the scale parameter, the more spread
out the distribution.

o oa < 1) is the shape parameter which describes the
relationship between the intensity rate and response
time:

— «a > 0: in this situation, the intensity rate is de-
creasing over time. This happens when most of
the responses occurs in the very early stage, or
there is a significant ”infant mortality”. Hence,
it is very important to consider the communi-
cations with such patterns when we want to
maximize the influence.

— a = 0: in this situation, the intensity rate is
independent of the response duration. It is
proportional to the daily activity value, and the
whole process will reduce to a heterogeneous
poisson process.

— a < 0: this means the intensity rate increases
over time. In this situation, the responses are
more likely to occur as time goes on, which
means it is an ”aging” process.

e [ is the location parameter, which determines the
”location” or the shift of the distribution. The H (z)
function used in the formula is a Heaviside step func-
tion, which is a discontinuous function whose value is
0 when z < 0 and 1 when = > 0. In social dynamics
scenario, the location parameter can indicate the
consideration duration in the response of a user.

4.4 Parameter Optimization

Based on the discovery and the proposed function in Equation
12 and Equation 13, the hazard function can be obtained
using Equation 9 as:

09 o(tyr — ) (14)

0= e

For ease of computation, we replace the Heaviside step
function by a logistic function (with a fix parameter ¢ =
0.001), and finalize the hazard function as:

A(7]0) = % (1 + e*iw“’fgy (15)

We only need to get the gradients of every parameters with
respect to A¢(7), and then using the strategy proposed in Sec-
tion 3.2 to get the modeling parameters 0 = {Xo, o, w(t), B}:

oXe(T)  wi(t) JREO: S -1
= 7 (1+ @ ) (16)

0o (w(t)T
t)T— -1
20w<t) (1 RO zs) a7)

8)\,5 (T)
da

= —log (w(t)7)
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For the purpose of finding a good region of parameter
space, we set the initial value of parameters using some prior
knowledge. Meanwhile, in order to avoid the accuracy error,
we divide the parameters into three groups, and optimize
these parameters iteratively until reaching convergence.
The overall algorithm is presented in Algorithm 1.

Algorithm 1 Parameter Optimization

Input:
Communication data of two users CD(u,v).
Output:
Communication parameters {\o, «, 3, w(¢)}.
1: it =0
2: sum_duration = 0; > Initialization.
3: min_duration = oo;
4: for i=1 to size(CD(u,v)) do
5: sum_duration = sum-duration + CD(u,v)(i).e -

CD(u,v)(i).s;

6: if CD(u,v)(i).e - CD(u,v)(i).s | min_duration then
7: min_duration = CD(u,v)(i).e - CD(u,v)(i).s

8: end if

9: end for

10: average_duration = sum_duration / size(CD(u, v));

11: Ao(t)!% = 1/ average_duration

12: ol = 0.9

13: get w(t)[% using KMEANS with all e; in CD(u,v)

14: ,B[O] = 0.5 min_duration > End initialization.

15: repeat
16 it —it+1
17: )\gt],a[”} = argmaz,,ol(Xo, o, Blit=11 ¢ (¢)lit=11)

18: plitl = argmazﬁl()\[it] all g w(t)lit=11)
19: w(t)t = argmazy, )l (Ag Zt] alitl glitl (1))
20: until Convergence

21: return 6 = {)\([;t],a[it],ﬁ[“],w(t)[it]}

5 EXPERIMENTS

In this section, we conduct experiments on two datasets
introduced in Section 4.1. We will first show how well our
model matches the real world data, and then analyze the
distribution of all the parameters to illustrate the distinction
between different social systems. Furthermore, we will give

suggestions on how to maximize the effect of information
spreading among diverse groups of people.

5.1 Baselines and Evaluation Metrics

To exemplify the performance of our model, we use some
homogeneous survival based model and heterogeneous poisson
model as baselines. The details of these models are described
as follows:

e Weibull distribution: it gives a distribution which
has been controlled by two parameters and k in its
scale and shape. The failure rate is proportional to
a power of time.

e Log Normal distribution: it is a continuous probabili-
ty distribution of a random variable whose logarithm
is normally distributed. Hence, Y = In(X) has a
normal distribution if X is log-normally distributed.

e Pareto distribution: the Pareto distribution is a
power law probability distribution that is used in
many types of observable phenomena.

e Heterogeneous Poisson Point Process: the Poisson
point process is one of the most used point processes.
When the intensity parameter \ varies over time, it
is called the Heterogeneous Poisson Point Process.

As some previous studies use event time to eliminate the
natural time user activity effect, we examine the efficiency
for the homogeneous survival based model in two ways:

e We model the communication dynamics directly; or

e At the outset, we transfer the natural time commu-
nication data to event time communication data and
then learn the model and regenerate the data under
event time scenario. In the end, we transfer the event
time regeneration back to the natural time domain.

We use KolmogorovSmirnov test to evaluate the perfor-
mance. It is one of the most useful methods for comparing
two samples. It tries to quantify a distance between the
empirical cumulative distribution functions of two samples
by the following method:

ksstat = supg|Fi(z) — Fa(z)| (23)

where the empirical cumulative distribution function for a
sample is defined as below:

1 n
= ; I1— inf,2) (X4) (24)

I—ing 21 (Xi) =
The lower the ksstat is, the more similar the two samples
will be. Based on the ksstat value, we further calculate the
p — value of the test case, and calculate out the ksrate value
as the percentage of test cases which pass the p — value test
at the default 5% significance level. In so doing, the larger
the average value of ksrate is, the more accurate the model
will achieve.

(X; <x)

5.2 Effectiveness

We first make a comparison on the information diffusion
dataset. We try to evaluate the methods in three dimensions:
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Figure 5: Response time distribution of a test case
in the dataset.

e Response time duration KS-test: to test whether
the response time distribution in the simulation is
similar with the real case.

e Daily activities KS-test: to test whether the ac-
tivities we generated in different time period of the
day are similar with the real case.

e Accuracy: the probability that the test case passes
both the two tests above.

Table 1 shows the experimental result. Although our
method does not give the best performance in the KS-test
of the response time, we beat the rest of methods in all
the other metrics. 77.1% cases of our model successfully
pass both the Response time duration KS-test and the
Daily activities KS-test, while the other methods can only
achieve 56.4%. The improvement is about 36.6%.

The Heterogeneous Poisson Point Process is the closest
method compared at the accuracy test. Comparing to the
other baselines, it has advantage at the Daily Activities
Dimension. However, as we expected, it can not well capture
the response time distribution as shown in Figure 5.

For the rest of the baselines, the survival based methods
give a similar performance in the Response time duration
KS-test. However, all of these methods cannot well capture
the user activities in natural time scenario. Here, we plot the
number of the response messages per hour everyday in Figure
6. Unlike our model, these methods will generate much more
response messages in late night and much less messages in
the daytime comparing to the real data. The experiment
result improves if we conduct transformation between natural
time and event time before and after modeling. However,
there is still a huge gap between the methods using event
time transformation and our model.

We use another statistic test to further demonstrate the
advantage of our model: for one test case, we first classify
the communication data (and the simulation communication
data) into several sub—data by the starting time of the com-
munication record, then apply the KS-test to each sub-data.
The performances for all the methods are shown in Figure
7. It can be seen that the proposed method significantly
outperforms other baselines in all time period.

6000 O real case-—our model-o-weibull:-+-log normal - pareto

time (day)

Figure 6: The comparison in the number of response
messages generated by the models.
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Figure 7: ksrate and its ksstat of information diffu-
sion data clustered by time

We also carry out the same experiment on the email
dataset, and present the result on table 2. Similarly, our
model shows no advantage if we only take a look at the ksstat
on the response time dimension. However, our method has
higher performance on ksstat in daily activity and overall
accuracy comparing to all the other methods. The ksrate
and ksstat in daily activity dimension of all the other sur-
vival based methods get a better value comparing to their
performance in the information diffusion dataset. A possible
reason is that people tend to receive and respond emails in
some critical time point of the day, while their time in the
social network are more diverse. Therefore, our model are
more suitable for the heavy users in the social network.

5.3 Model Parameter Analysis

We further analyze the parameters of our model from two
perspectives by their physical meanings. On one hand, we
try to find when the users tend to use the social system from
their daily activity parameters w(¢). On the other hand, we
analyze what kind of behaviors they tend to do based on
their respond function parameters.

5.3.1 Daily Activities. According to the daily activity pa-
rameters w(t) learnt from our model, the users in the infor-
mation diffusion dataset can be divided into 7 categories by
adopting the k-means algorithm. The result is illustrated on
Figure 8. We can further combine them into 4 groups with
clear meanings:

e Heavy users: the users in category 5 stay active all

day in the social system. In our information dataset,
there are 39.49% users having this attributes.



Table 1: Fitting result for the information diffusion dataset. The ksrate is the pass rate at the default 5%

significance level.

Weibull Log Normal Pareto Heterogeneous

Model our .

real event real event real event Poisson
Response ksstat 0.1597 0.1555 0.1612 0.1741 0.1731 0.1581 0.1673 0.2021
Response ksrate 87.23% 88.56% 87.23% 80.88% 81.64% 87.56% 84.11% 71.43%
Daily ksstat 0.1440 0.3532  0.3190 0.3520  0.3249  0.3526  0.3189 0.1907
Daily ksrate 84.49% 28.91% 33.03% 30.11% 32.61% 30.38%  33.99% 73.52%
Accuracy (both 77.06% 26.74% 30.72% 27.91% 30.30% 28.79%  32.00% 56.40%
pass)

Table 2: Fitting result for email dataset. The ksrate is the pass rate at the default 5% significance level.

Weibull Log Normal Pareto Heterogeneous

Model our .

real event real event real event Poisson
Response ksstat 0.2150 0.1813  0.2022 0.1748  0.1945 0.1685  0.1897 0.2797
Response ksrate 79.07% 94.57% 88.37% 96.12% 86.82%  96.90%  93.80% 40.31%
Daily ksstat 0.1440 0.2527  0.2230  0.2420  0.2188  0.2385  0.2189 0.1570
Daily ksrate 100% 65.89% 76.74% 68.99% 83.72% 73.64% 78.29% 100%
Accuracy (both 79.07% 63.57% 67.44% 68.22%  72.09% 73.64% 73.64% 40.31%
pass)

—— Category 1 ——Category 2 —— Category 3 —— Category 4 ——Category 5 —— Category 6 —— Category 7 a.m. in category 2,3 and 18 : 00 — 20 : 00 p.m. in
9o to work lunch time go off work Category 6
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Figure 8: The clustering result of user daily activi-
ties. The white area means the day time, while the
grey area means the evening time.

e For the purpose of entertainment: some of the users
like to use the social system between dinner and
bed time (as shown in category 7). The users with
the habit will be labeled as ”For the purpose of
entertainment”. In all, there are 13.52% users with
this label.

e Using as a leisure tool: 21.44% people tend to use
the service as a leisure tool before sleep, leading to
a peak at 12 : 00 p.m. in category 4, and another
peak at 0: 00 a.m. in category 1.

e Using on the way: there are 25.55% people who tend
to use the social network service during the commuter
time. We can observe obvious peaks at 7 : 00 —9 : 00

We can find similar results in the clustering of the email
dataset. Given the length of the paper, we did not show the
clustering result of the email dataset.

5.3.2 Respond Activities. Next, we count the parameter
distributions of the respond function parameters in both
datasets, and present the result in Figure 9 and Figure 10.
From the figure, we can get the following findings:

e )\o: the distribution of Ay follows a log normal distribution
in both datasets. The mean value of Ao in the cascading
dataset is around e ™19, while most Ao in the email dataset
locate at e™°.

e «: it follows a normal distribution with mean value 0.008
in cascading dataset and 0.1206 in email dataset.

In the information diffusion dataset, 10.8% test cases
has a a parameter whose absolute value is less or equal
than 0.01. In such situation, it is a heterogeneous poisson
process dependent on daily activities (we have already ex-
plained in section 4.3), which partially proves the findings
in [19]. There are still 36.4% test cases whose a > 0.01,
and 52.8% test cases whose a < —0.01, indicating that
the failure rate of these processes is dependent on the
response durations. Meanwhile, most test cases in the
email dataset have a positive « value (91.4%), showing
that the failure rate is decreasing over time. If we want to
get response from these people (with a > 0), then we need
to seriously consider the time start the communication.

e [3: the distribution of 8 is different with two datasets. In
the email dataset, it is a typical log normal distribution
with a single peak near e®s ~ 2min. In the information
diffusion dataset, it is a bimodal distribution with one
peak near 0 and the other near 1min, showing that two
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different behaviors exist in the social network system:
some people like to make decisions very fast, while the
others tend to think for a while before their response.
Hence, we need to use more eye-catching words to attract
the people having smaller 8 on one hand, while, on the
other hand, concentrate more on the substantive content
for those with higher 3.

6 CONCLUSIONS

In this paper, we study the problem of social behavior dy-
namics modeling. In order to solve this problem, we propose
a temporally Heterogeneous Survival framework, and give
a novel method that models the communication intensity
rate between two people based on the observation from an
information diffusion dataset. Our proposed model has the
following advantages:

e Unification power: it is able to model the problems in both
natural time scenarios and response time scenarios. As the
model is designed under the probabilistic framework, it
can be easily solved by Maximum Likelihood Estimation.

e Interpretability: All parameters have clear physical mean-
ings. This is helpful for insightful understanding on social
dynamics.

e Usefulness: We apply the model in two online social
communication datasets. The learnt parameters and dis-
covered statistical regularities lead to multiple potential
applications.

e Accuracy: our model can successfully regenerate the inter-
action patterns in a social communication dataset. Also,
extensive experiments are conducted to demonstrate the
effectiveness of the model.
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