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Information Cascade

- In network environment, if decentralized nodes act on the
basis of how their neighbors act at earlier time, cascades
will be formed.
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Cascading Process Prediction

- Problem Definition:
- Source: the early stage of an information cascade

- Target: the later stage of the information cascade, or its cumulative
cascade size of any later time
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From Macro to Micro: Subcascades

- How to model subcascades?
- How to connect subcascades and the global cascade?
- How to make predictions fast and accurate?




User Behavioral Dynamics

- Behavioral Dynamics of a user: The changing process of its
offspring nodes that involve in the cascade after the user involved in the post.

- Representation

- Averaging the size growth curve:
- Different subcascades of the same user might have different size growth curves.

- Survival rate: the percentage of nodes that has not been but will be
infected

- For different subcascades of the same user, the survival function is quite stable.
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Parameterize Behavioral Dynamics

- The behavioral dynamics need to be parametrized for ... oo semson
the ease of computation and modeling.

- Exponential and Rayleigh distributions cannot well
capture both the scale and shape characteristics of
behavioral dynamics.

. The Weibull distribution is adequate for parameterizing =~
behavioral dynamics:
- A: control the scale parameter
- k: control the shape parameter
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Covariates of Behavioral Dynamics

- Interaction information between nodes is not always
available. It is difficult to measure out-of-sample nodes.
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The parameters of the user’s behavioral dynamics can be well

estimated by the behavioral features of its network neighbors.
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NEtworked WEIbull Regression (NEWER)

F(A\k,B,7) = G1(A k) + uG2(B,A) + nGs(v, k)
Gi1(A k) = —log L(A, k) Log likelihood

1
Ga(A, B) = N llog A —log X - B||> + as ||1Bll;,  Parameterize A

Eh e ) = % llogh —log X - 7| +a, |yll, Parameterize k

' O Theoretically proved to be lower-bounded. |
' O Coordinate Descent strategy is exploited with |
| guaranteed convergence. |



Subcascade Process Prediction

From rate dimension to size dimension
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From Subcascades to Cascade
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Dynamic Prediction

Real Application Demand:
- Accuracy
- Real-time

Sampling strategy:

- Ignore most recalculations for subcascades by using the
previous calculation instead.

- Setting the calculation time point based on the last
calculation.

Time complexity: from O(T?) to O(T)

(with an error bound)



Experiments

Datasets: Tencent Weibo
All cascades generated between Nov 15th and Nov 25th in 2011.
retain all 0.59 million cascades that the cascades size are at least 5.

Baseline:
Cox Proportional Hazard Regression Model (Cox)

Exponential/Rayleigh Proportional Hazard Regression Model
(Exponential/Rayleigh)

log-Linear regression(Log-linear)
Evaluation metric:

RMSLE: Root Mean Square Log Error

Ao-Precision: Precision value that the predicted value
within (1+0) £ 1groundtruth



Cascade Size Prediction

- What is the final size of the cascade?
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The improvements are more obvious In

early stage.



Outbreak Time Prediction

- When will the cascade break out?
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Cascading Process Prediction

- What is the size of the cascade at any later point?
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90% percentage accuracy when we have

only 20% early stage informations.



Efficiency of the method

- How fast can our method achieve?

Method Without Sampling With Sampling
Strategy Strategy (6 = 0.1)
Size > 20 8.47 x10°s 10.73s Improvements:
Size > 50 7.61 % mfs 8.62s 1075
Size > 100 6.65 % 10°s 7.09s
Size > 500 4.35%10°s 4.33s
Size > 1000 3.4%10°s 3.30s

Running time for cascade size prediction

Size Without Sampling With Sampling

Strategy Strategy

(El = 0.1 and €2 — Dl:l

20 1.4 % 107 4.2 % 10° Improvements:
50 3.5 % 1012 7.6 % 10° 1076
100 6.9 * 101° 1.4 % 107
500 3.5 % 107 3.4% 10"
around 1000 6.9 = 10 4.2 107

Calculation number for cascade process prediction



Conclusion

- Anew Problem:
- Given early stage information, predict the future cascading process.

- Anew angle:
- Uncover the cascading process through behavioral dynamics.

- Anew model (NEWER):

- Model the behavioral dynamics and predict the subcascading
process

- A scalable solution:

- Predict the dynamic process of information cascade with linear
complexity

The proposed method has been

transferred to Tencent for social marketing.
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